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EXECUTIVE SUMMARY

The fourth-order spectrum represents a new way of extracting information from data. Used in conjunc-
tion with the second-ordir spectrum (or power spectrum) the fourth-order spectrum reveals otherwise hidden
relationships that are important for classification of transient signals in passive sonar and for classification of
resonances in active sonar. In addition, the fourth-order spectrum can extract range and Doppler information
from an active sonar return under conditions which render the conventional spectrum useless. Moreover, the
potential for signal-to-noise ratio improvements in Gaussian noise environments is high. Theoretically, the
fourth-order spectrum eliminates all additive Gaussian noise from its final result. The practicality of this
theoretical fact is currently being considered.

The drawbacks in using the fourth-order spectrum in practice are: 1) it requires more processing
capacity, and 2) it will require training in order to properly interpret the results, unless the detection
and classification functions are automated. However, these drawbacks have been minimized in this report
by the utilisation of a special case of the fourth-order spectrum. Nevertheless, all the advantages of the

fourth-order spectrum discussed above have been maintained.

The following points are discussed in more detail in the report:

1) A new class of multidimensional non-Gaussian density functions are introduced. This class represents
physically meaningful signals, since, independent data are not required. As a special case, the class reduces
to a multidimensional Gaussian density, so a wide variety of density functions can be represented. In the
report fourth-order spectra were obtained for the class of multidimensional non-Gaussian density functions.
In this way, it was shown that the fourth-order spectrum could differentiate between a Gaussian and a non-
Gaussian process. This is important because many noise sources in the ocean are Gaussian. For example,
ambient noise, reverberation, flow noise, ect., are Gaussian. Whereas, signals are usually non-Gaussian. For
example, sinusoids, transients, active sonar transmissions, ect., are all non-Gaussian.

2) An active sonar classification technique relies on backscatter resonances to differentiate target types.
But resonances may not give an unique classification, since, many waveforms could have the same resonances.
In order to show the potential of the fourth-order spectrum for classification, an idealised example of creeping
wave backscatter is discussed. In this example, a sum of two sinusoids and a mixture of two sinusoids have
the same spectrum (resonances). However, only the mixture represents the physical phenomenon of creeping
wave backscatter. It is shown that the fourth-order spectrum differentiates between a sum and a mixture of
sinusoids, and therefore, can aid in active sonar classification.

3) When long pulse trains are transmitted the return echo is usually amplitude modulated from target

dynamics, Doppler spreading, or medium effects. Under these conditions, the spectrum can be severly
distorted making detection and classification impossible. Using an amplitude modulated coded pulse train,
it is shown that the fourth-order spectrum can extract range and Doppler information while for the same I .
conditions the spectrum is useless.

iii
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Fourth-Order Spectra of Mixture and Modulated Processes

1. Introduction

Certain underwater acoustic signals can be modeled as mixture processes. For example, a scattered wave
from an extended target will often consist of several subwaves with different characteristics. Determining
whether or not a received waveform is from an extended target is an important problem[l1,21. Another
exanple of a mixture process is an intermittency produced by a complex mechanical source3l. Also,
environmental conditions can cause several signals with different doppler frequencies to be mixed together
in the received waveform. In all of these examples the fundamental properties of the waveform can be
characterised by a mixture process. Other signals are better modeled as modulated processes. Wave
propagating in random medium and Doppler spread targets are two examples.

The objectives of the report are: 1) to develop a parameterized mixture process model, similar but
more general than reference 4, that characterizes the phenomena of interest and extract information from
the model by estimating its spectra and higher- order spectra 15,6,71; and 2) to estimate spectra and higher-
order spectra from amplitude modulated processes.

It will be shown in the report that the mixture process is in general a non-Gaussian process. Therefore,
higher-order spectra would contain additional information about the non-Gaussian waveform. In our initial
application, a measurable higher-order spectrum would be enough to classify the phenomenon as belonging
to a mixture process. Specifically, it will be shown that a special case of the trispectrum 18,91 can determine
whether or not a mixture process is present, whereas, the second-order spectrum cannot. For this special
case, an interesting result for sinusoidal mixture processes is presented and demonstrated by simulation.
For the modulated case, examples are presented which show the usefulness of the fourth-order cumulant
spectrum in extracting target information from an amplitude modulated return.

The second-order (power) spectrum the and fourth-order spectrum (trispectrum) are special cases of
the nth-order spectruml8,10. The nth-order spectrum is defined as the Fourier transform of the nth-order
cumulant. Therefore, the nth-order spectrum is also called the nth-order cumulant spectrum. For a sero
mean and stationary process the second-order and fourth-order cumulant functions are as follows:

second-order
C2 (r) = E[z(t)z(t + r)j,

fourth-order

C (ri, r2, 3) = Elz(t)z(t + T)z(t + 2 )x(t + r3)1

-Elz(t)z(t + ri)lElz(t + 2 )z(t + ?3)J

-Elz(t)z(t + r2 )IElz(t + rt)x(t + 3fl)

-Elx(t)z(t + r3 )]Elz(t + r,)z(t + 72)1.

' ! I 1



TR 8403

Since the Gaussian expansion is subtracted from the fourth-order moment, the fourth-order cumulant is sero
for Gaussian processes. Therefore, as noted by Rosenblatt (5, additive Gaussian noise will not effect the
result of the trispectrum.

This report is concerned with a special case of the fourth-order cum'ilant. Namely, when, r; = 0, and
r2 = r3 . Therefore, the fourth-order cuinulant reduces to the following:

C(4 2(r) = Elz(t) 2X(t + r)21 - Elz(t) 2JElx(t + r)2) - 2Elx(t)x(t + r)12

= R,(r) - Varlz(t) 2 - 2[R(r)l2 . (1.1)

If in addition r = 0, then C42 is related to the kurtosis of x. Properties of kurtosis were discussed in
previous publications 11,12J.

The fourth-order spectrum is therefore,

¢42(W1 = l0 C2(r)e-J"dr

f +cc 
f+00

= 0 R2(r)C-W',dr - 2ir[Varlz(t)j 26(w) -2 R(rl2ew-'dr,. (1.2)

Another special case of the fourth-order cumulant arises when r, = r2 = 0 or when r, = r= =r.

For this case,

C43 (r) = E[x(t)%z(t + r)j - 3E[2(t)2 E[z(t)z(t + r)

= R3(r) - 3Varj(t)IR(r).

When the process is Gaussian, C4 3 (r) = 0. Therefore, its spectrum is also sero for all frequencies.

2. Mixture Processes

The need for multidimensional non-Gaussian processes arise from the definition of the nth-order cumu-
lant spectra. Here non-Gaussian processes will be modeled as non-Gaussian mixture processes. As alluded
to in the introduction, these mixture processes are more than mathematical conveniences, because they seem
to represent physical processes.

A bivariate mixture probability density is defined as follows:

f(Z, y) - (1- A)2 f1(X, y) + A2 f2 (X, y) + A(1 - A)If, (z)f 2 (ylz) + 12(z)fh(yjX)}, (2.1)

2
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where, 0 < A < I and f-", f(z, y)dzdy = 1.

The bivariate densities jj(z, y) and f 2 (z, y) can be in general any bivariate densities. However, Gaussian

densities are utilised in this report in order to obtain tractable results. But, even when fI(z, y) and f2(z, y)

are Gaussian the mixture density f(z, y) is in general non-Gaussian. This was demonstrated for univariate

densities by Bendat and Piersol [131. If fj(z, y) A f2(x,y) and A # 0,1, then f(z,y) is non-gaussian. The

Gaussian densities ft(z, y) and f2 (z, y) are defined below.

Suppose the marginals are the same in (2.1), i.e., fi(z) = f 2(x). Then,

f(X, Y) = (1- A) (z,)+ Af 2 (z, Y). (2.2)

As an application of (2.2), let the mixture process be passed through a hard clipper. It is desired to find

the autocorrelation function at the output. The hard clipper is sometimes used in sonar arrays and other

applications include neural networks[141. For the Gaussian case the result is well known[15,161. However,

for the non-Gaussian case no general result is known. But, a general result for the non-Gaussian mixture

density (2.2) reduces to the following,
2s.,(r) = (1 - 2 - l + sin 'p 2 (r)j.

If, A = 0, 1, then R,.(r) reduces to the Gaussian case. Also, the autocorrelation function at the output of

more general nonlinearities 1171 can be similarly derived.

The form of (2.1) is more general than the bivariate mixture densities discussed in reference 4. This

generality represents an improvement, since, (2.1) does not suffer from the disadvantages of the mixture

densities of reference 4. For example, if x and y are independent than (2.1) and (2.2) reduce to a product

of univariate mixture densities. Also, (2.1) and all special cases, e.g., (2.2), always satisfy the strong mixing

condition.

The form of (2.1) can also be extended to a multivariate non-Gaussian mixture density, but this

generality is not needed here.

Let,

-- 1 e-t !T ,,7'+,2'l,,=,h (Z' Y) 1 2 (,I - _p 2

and

1 12f2(r, ) = 2," o(_ - ,_)_/

be the mixture densities of (2.1). Then the autocorrelation function,

R(T) = J xyf(x, y)dxdy,

3
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reduces to the following,

R(r) = [(1 - A)pI(r) + Ap2 (r)I[(1 - A)a + Aoa)j. (2.3)

The spectrum of (2.3) is

S(W) = R(r)e-,rdr

= [(I - A)a + Aal ((1 - A) 0pI(r)e-'wrdr + A 0 P2 (r)e ?dr] . (2.4)

On the other hand, the fourth-order moment of (2.1),

R2(r) = z 2 y2 f(X, y)dxdy,

reduces to the following result,

R2 (r) 1 [(2 ~'
+(1-A)P2(r) + AP2(r)II(l _ A)0,4 + A&41

+A(I _ A)fP2(r)o2 - p2(r)oj(0,2 _ al. (2.5)

Since R2 (r) is clearly different from a linear combination of R(r)2 a non-Gaussian mixture process can

be differentiated from a Gaussian process.

From the definition of the fourth-order cumulant given in (1.1),

C42(r) = R2 (r) - [(1 - A)o + a,'l2 - 2R(r)2 . (2.6)

As expected, if A = 1,0, (the Gaussian case), then C 42 (r) = 0. However, for the non-Gaussian case,

when a, = a2 = 1,

C4 2 (f) = 2 A( I - )[p(r) - p2 (r)1 2 . (2.7)

The fourth-order spectrum of (2.7) is,

C 42(w) = 2A(1 - A) I(r) - p2 (r)12 e- wdr. (2.8)
o0

EXAMPLE 1.

Let, pi(r) = e" "', and p2 (r) = e- 'Ilt in equation (2.8), then for A 9 0, 1,

C42(w) = C42 (w) 4a1 + 4C92 4(at + a2) (2.9)

2A(1 - A) - w2 + (2aj)2 W2 + (2a2 )2  W2 + (as + a2)(2

4
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Equation (2.9) is plotted for positive frequencies in figure 1 for three cases: (a1 = 10, Q 2  1),(a =
10, a2 = 2), and (a, = 10, a 2 = 9). The last case is close to zero for all frequencies indicating that the
process is almost Gaussian. The other two cases show that the fourth-order spectrum can differentiate
between Gaussian and non-Gaussian processes. It is also apparent from the figure that the fourth-order

spectrum is negative for some frequencies.

EXAMPLE 2.

Let, pl(r) = e-"Illcos(wor), and, p2(r) = e-a'l2Icos(wjor), in (2.8), then, for A # 0, 1,

C42(W) 2aj Ck I_+_1_

c2(W) = 2 A(1 - A) W2 + (2a,) 2 + (w - 2wo)2 + (2ai) 2  (w + 2wo) 2 + (2a,) 2

2s2 C12  2+ C 2+w2 + (2a2) 2  (W - 2Wo) 2 + (2a2)2 (w + 2wo) 2 + (20 2 )2

2(al + a 2 ) a t + a2 C11 + 2
2; + (al + a2) 2  (w - 2w,) 2 + (a, + t2)

2  (w + 2w0)2 + (al + 2 )2 (

Equation (2.10) is plotted in figure 2 for the same conditions as given in example 1.

The fourth-order moment, for the other special case mentioned in the introduction, is

C43 (r) = 3A(l - A)[p2(r)a2(a, - a) + pj(r)0,( - a2)J.

If Oi = a2, then C 43 (r) = 0. This case will not be considered further.

3. Sinusoldal Mixture Processes

A problem that occurs in underwater acoustics can be stated as follows: given s(t), -T!_tT, determine
if s(t) represents a sum of two sinusoids or a mixture of two sinusoids. A more complicated problem arises
from creeping wave backscatter. This case is usually discussed in the context of target classification from
resonancesi 18j. Here, however, the backscattered waveform is idealized as a mixture of two sinusoids in
order to show the classification potential of fourth-order spectra. Whereas, both a sum and a mixture of two
sinusoids will have fourth-order spectra, only the mixture represents the idealised backscattered waveform.
Therefore, the fourth-order spectrum gives idditional information about the physical phenomenon that can
be utilized in target classification.

Nevertheless, it is interesting that the idealised problem can be solved by fourth- order spectra. On the
other hand, second-order spectra cannot differentiate between a sum and a mixture, since both could have
the same spectra. However, there may be amplitude differences, but this information is usually not enough
to make a determination.

!+5
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It will be assumed that the data are ergodic so that the time autocorrelation function R(r) and the
time fourth-order function R2 (f) of the random process equals the corresponding statistical autocorrelation

function and statistical fourth-order function, respectively 119].

a) Sum of Sinusoids

Let,
a(t) = -sin(wit + 01i) + -sin(w 2 t + 02), (3.1)

where, wL 0 W2 , -T _< t _ T, and the parameters 01 and 02 are random variables uniformly distributed

between 0 and 21r.

The time autocorrelation function,

R(r) = Tlim~ 2(T -I ( TI s(t)s(t + r)dt,

reduces to,

(r) = -2 cos(WI) + -2co(W2,) = R(r). (3.2)
4 4

Its corresponding spectrum is given in (3.3),

5( _ 2ira 6(w - w,) + 6(w + w) + 2 6(- 2 )+(+ ) (3.3)4 2 4 2

Similarly, the time fourth-order function,

I T/ r-ll

R 2 (r) = lim I s(t)2s(t + ri2 dt,
T-oo 2(T -jr)j Tr

for (3.1), reduces to,

a4 + 2aaa2 + a2 a4 4 2 2
= 16 + jjcos(2wjr) + -cos(2w 2 r) -a cos(wr)cs(w2 r) R 2 (r). (3.4)

Notice that the spectrum of R2 (r) will have 5 positive frequencies. However, the fourth-order cumulant

is desired. It reduces to,

C42 (r) - 16 2 Icos(2w r) - acos(2w 2r),
18 32 32

and its corresponding spectrum follows as,

_ 27r(a4 + a4) r4
2i 2w 6(w - 2w,) + 6(w + 2w,) 2,ra 6(w - 2W2 ) + 6(w + 2W2)C42(W) = '( - 216(l) - 2 (3.5)

16 32 2 32 2

6
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Therefore, the fourth-order cumulant spectrum for (3.1) contains only 3 positive frequencies located

at 0,2wi, and 2W2. The frequency locations for the fourth-order cumulant of the mixture process will be
different. This represents a means to differentiate a sum from a mixture.

b) Mixture of Sinusoids

Let,
s(t) = alsin(wit + OI)h 1 (t) + a 2sin(w2 t + 0 2 )h2 (t), (3.6)

represent the sinusoidal mixture process over the interval, -TL <_ t < Tur, where TL > 0, and Tr > 0. The
functions ht(t) and h2 (t) are defined in the following way,

hi(t) =u(t + TL) -u(t -T),

and
h 2 (t) = u(t - TI) - u(t - Tu),

where u( is the unit step function. These functions also have the property that h?() = hi(, i=1,2, which

will be used later.

The time autocorrelation function of (3.6),

R(T)= lim +r1 1 ,- I s(t)s(t + r)dt,TT,,v-oo TL +TU - 2[rj -T, +,,

reduces to, for r > 0,

N(T) lir Icos(wIr) L I
TL.Tu-oo 1 2 \ TL + TU rz1- r,

a2TL +T+ 2 COB(W 2 r) k TL+TU) 21t1 j
TL+Tu / 1

A similar expression is obtained for r < 0. These expressions converge to the following,

2 
(
2

N(T) = (1- A)-2COS(W2 ) + AHi cos(wtr), (3.7)
22

where, +L ftJ -- A. If A = ,then (3.7) and (3.2) will have identical spectra.

The fourth-order moment can be shown to converge to the following result,

W2(r)(4 + 8 s(2W2 f) + !4- (3.8)
4 8 8o(wi)

7
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Notice that only 3 positive frequencies are present in (3.8). The fourth-order cumulant is given by,

1 2 2 alA 2  a'(1 - A)2
C42(f) = -A(1 - A('- a 2 ) - -

4 4 4

+OI( A cos(2wir) - Ca8(1W -a .2(l 2,\ ) a2A(1 - A\)cos(c&,T)cos(W2 r).

If, al = a2 1, and A = , the fourth-order cumulant reduces to,

1 1
C4 2(r) - I 4cos(wjr)cos(Wj ) '  (3.9)8 4

and its corresponding spectrum,

c,2(W) 21r 2ir 1 - (W2 - WI)) + 6[W + (W2 - wl)) _ 2w6w - (W2 + WI)l + 6[W + (W2 + W)l
82 8 2

(3.10)
is clearly different from the spectrum in (3.5), for the same conditions.

EXAMPLE 3.

( Sum of Sinusoids)

Figure 3 represents the spectrum (in db) of (3.2) for a, = a 2 = 1, and A = . The corresponding

fourth-order cumulant spectrum (for a linear scale) is shown in figure 4.

( Mixture of Sinusoids)

The spectrum of (3.7) is shown in figure 5, for a, = a2 = 1, and A =. In this case the spectra of
figures 3 and 5 are identical. However, the fourth-order cumulant spectrum (3.10) as shown in figure 6 is

clearly different from figure 4. Therefore, the sinusoidal mixture process can be differentiated from a sum of
sinusoids, based on the fourth-order cumulant spectrum.

4. Modulated Procese

Modulated processes arise in communications as well as sonar and radar applications. Here the following

general modulated problem is treated. Let,

x(t) = a(t)z(t), (4.1)

be the modulated process. Where a(t) and s(t) are both sero mean and mutually independent processes.

Equation (4.1) is in general a non-Gaussian process even if both a(t) and s(t) are Gaussian processes. Its

autocorrelation function,

R.(r) = Efz(t)z(t + r)l = E(a(t)a(t + r)jE[z(t)z(t + r)j = R,(r)R,(r), (4.2)

8
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is a product of two autocorrelation functions. Therefore, its spectrum will be a convolution of the two

spectra. If s(t) is the information bearing component then the modulating component a(t) tends to interfere
with the reception of s(t).

Let a(t) be a Gaussian process. Then the fourth-order cumulant of equation (4.1) reduces to

C42 (,) = Var2la(t)l [Elz(t) 2z(t + r)2 1 - Var2 [z(t)J] + 2,R, (v) 2 (E(z(t)2z(t + T)
2

1 - R(])2 1 . (4.3)

Notice that (4.3) is not a simple product of autocorrelation functions. Therefore, its spectrum will be
different from the spectrum of (4.2).

Now let s(t) be Gaussian also. Then (4.3) reduces to,

C4 2 (r) = 2Var2 [a(t)IRs(r) 2 + 2Var2jz(t))R,,(r) 2 + R,, (r) 2R.(r)2 , (4.4)

which can be seen to separate the two spectra into a sum and a product rather than just a product.

EXAMPLE 4.

Let,
x(t) = a(t)cos(wot + 4'),

where, 0 is a random parameter uniformly distributed between 0 and 2jr. Then,

R.(r Ajrcos(wor)R2(,) = R,.(r) 2o{o)

If,
R,,(r) = - l ,

then the spectrum of R2 (r) is,

s 2(w} = (W - Wo) 2  + 2 + (w + Wo) 2 + a2 " (4.)

If a - co , then S(w) -. 0. This means that the sinusoidal frequency wo will not be observed in the

spectrum of R2 (r).

However, the fourth-order cumulant,

C,2,) = 1 R,,(,r) + valtfl cos(2wor),

has the following spectrum,

+4(W 21rVar 2[Ja(t)I 6(w - 2wo) + 6(w + 2wo) (4.6)

Now, the sinusoidal frequency 2wo is seen in (4.6) even as a -. cc.

9
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(Simulation: Amplitude Modulated Sinusoid)

The spectrum (in db) of a sinusoid, amplitude modulated by white noise, is shown in figure 7. The
sinusoidal frequency is not discernable in this figure because of the interference of the modulation as predicted

in (4.5). However, the fourth-order spectrum in figure 8 (plotted on a linear scale) reveals the underlying

sinusoid but at twice its frequency. This result is predicted in (4.6).

EXAMPLE 5. ( SONAR/RADAR APPLICATION)

Let,
k

y(t) = h -nTp)e ' + 81 ,

n=-k

-0o < t < oo, be the pulse coded transmitted signal of length, 2kT + T The pulses are defined as follows,

T u~ T
h(t - nT,,) = u(t - nTp + ) -u(t - nT,, -

where u0 is the unit step function. The parameters, T and Tp, for T _< Tp, represent the pulse width and

pulse repetition interval, respectively.

The received signal is assumed to be of the form,

z'(t) = a(t - Lft ht- T

n-k

where, Tft is the range of the target, w,d is the Doppler shift radian frequency associated with each
transmitted radian frequency wn, On is the phase of the nth transmitted pulse, and 0 is a random phase angle

uniformly distributed between 0 and 27r. The real stochastic Gaussian modulating function a(t) represents

a time fluctuating target[201. This model usually applies for transmitted signals of long length.

Let,
k

y'(t) E h(t - nTp, - v)el "w* (t - T1+0i'

n=-k

be the adjusted transmitted signal. Where 7" is a parameter that is adjusted in order to search for the true

range. For simplicity, it will be assumed that Tk = T , i.e., the range is known.

The envelope of the received signal is defined as follows,

z(t) = '

where the asterisk is the complex conjugate.

10
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Therefore, since the pulses are disjoint, i.e.,

h(t - nT,)h(t - n3T,, = t nO, TJ if n, n2,
0,itf n, 34 n2,

the envelope of the received signal is,

TR k

z(t) = a(t - -F) 1 h(t - nT,. - TR)eJIwS' (tT ' t+I. (47)
n= -k(47

The objective of this example is to compare the autocorrelation function of (4.7) and its corresponding
spectrum with the fourth-order cumulant function of (4.7) and its corresponding spectrum.

The autocorrelation function is given by the following expression,

k k

EIX(tl)z*(t 2 )) = R,,(t 2 - t) 1 7 h(t 1 - nT, - Tp)h(t2 - n 2 T, - TR)eJ("',i"t2 ' , (4.8)
nI=-kn2=-k

where,

R,,(t2 - t1 ) = E[a(t, - T - T
2 2

is a stationary autocorrelation function.

Therefore, since (4.7) is not in general a stationary process, the spectrum of (4.8) is defined as a two-
dimensional Fourier transform of the autocorrelation function,

S(TR, w1 ,w 2 ) = i-:o fe E[z(tj)x(t 2 )Je-Iw"t+w2"dtdt2 . (4.9)

To simplify the evaluation of (4.9) the modulating function will be assumed to be white noise, i.e., R,,(t 2 -
ti) = 6(t 2 - ti). Therefore, the spectrum of (4.8) reduces to

S(TR, w, W2) = Te- J 
(41+2T [sinl (W +  :l sin[(wI + (k + I)fJ (4.10)

[(WI +W2)l Sinl(W +W)zl2

The spectrum (4.10) is concentrated along the line, w, = -W2 with the same value , T(2k+1), for all
frequencies. Therefore, if WI = -W2, then, S(TR,w) = T(2k + 1), Vw. This clearly shows the interfering
effect of the modulating white noise.

The fourth-order cumulant function reduces to the following result,

k k

C42(t, = Var2 (al : h(t1 - nT - TR)h(t2 - n2 T - TR)ej 2 (I-' t ' -I 24t2I, (4.11)
nl=-k n 2=-I,

11
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where the Gaussian assumption for the modulating function was used to obtain (4.11).

Similarly, the fourth-order cumulant spectrum is defined as a two-dimensional Fourier transform,

C42(TR,W1,W 2) = f f C42(t1, t2)e- i' t ' +t,)dt dt 2, (4.12)

which reduces to,

k k
C4 2 (Tr,W1,W2) =Var

2 [alT 2  E E e-Iw1+w22 ,-, )II,-a+-:,T.+2rj

nj=-k n 2 -k

sn( -2w1,,,) 1 si(W2 +W2l,.,d):
sinl(wi - 2wn,d2 1 sinl(w 2 + 2wnd} 1J" (4.13)

Again, the spectrum is concentrated along the line, w, = -W2, but now with peaks at twice the Doppler
shift frequencies. To see this more clearly, let w, = -W2 = w , and w,nd = wj, Vn, i.e., all the Doppler shift

frequencies are the same, then

_ l 2w T 2

C4 2 (TRW) = Var2 JaT 2 (2k + 1)2 i (w 3'" (4.14)

It is clear that (4.13) and (4.14) are not interfered with by the modulating fun, kion, except for the
constant representing its variance. Therefore, the fourth-order cumulant spectrum of the received signal
will be discernable. Whereas, the spectrum of (4.8) may not be discernable depending on the modulating

function a(t) as shown in example 4.

5. Conclusions

It has been shown that for non-Gaussian processes, modeled as mixture and modulated processes,
higher-order spectra can extract information that second-order spectra cannot. Namely, the fourth-order
cumulant spectrum can differentiate between purely Gaussian processes and mixture non-Gaussian processes.
This was demonstrated by several examples. Moreover, the fourth-order cumulant spectra can differentiate

, between a sum of sinusoids and a mixture of sinusoids. This was demonstrated by simulation.

An important practical application of fourth-order spectra showed that target information, from an
active sonar return, could be extracted . Specifically, the fourth-order spectrum extracted Doppler shift
frequencies from an amplitude modulated coded pulse train return, whereas, the spectrum was unable to do
so.
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